Как выглядит термометр: Термометры для воды • Gradusniki.ru • Градусники.рус

Содержание

Приборы для измерения температуры — виды и принцип действия

Большинство технологических процессов корректно проходят только при определенной температуре. Кроме того, измеряемые температурные показатели помогают определять, насколько корректно используется затрачиваемая энергия.

Иными словами, это — та величина, которую нужно постоянно контролировать. Все виды приборов для измерения температуры делятся на контактные и бесконтактные. Также они классифицируются по материалам, принципам и способам действия.

Виды термометров по принципу действия

Процесс измерения температуры может основываться на разных физических процессах. Исходя из этого, выделяют 5 видов термометров.

Контактные

Такие приборы еще называют термометрами расширения. Они основаны на отслеживании изменения объема тел под действием меняющейся температуры. Обычно измеряемый диапазон температур составляет от -190 до +500 градусов по Цельсию.

К этой категории относятся жидкостные и механические устройства. Жидкостные представляют собой приборы в стеклянном корпусе, заполненные спиртом, ртутью, толуолом или керосином. Они прочные и устойчивые к внешним воздействиям. Температурный диапазон измерений зависит от типа используемой жидкости (наибольший — у ртутных, наименьший — у цифровых).

Механические могут работать с разными типами сред, включая жидкостные, газообразные, твердые или сыпучие. Универсальность позволяет использовать их в разных инженерных системах.

Термометры сопротивления

К этой категории относятся приборы, которые способны измерять электрическое сопротивление веществ, меняющееся в зависимости от температурных показателей. Рабочий диапазон этих устройств — от -200 до +650 градусов.

Такие термометры состоят из чувствительных термодатчиков и точных электронных блоков, контролирующих изменения проводимости, сопротивления и электрического потенциала. Обычно их встраивают в общую систему мониторинга и оповещения, туда, где нужно отслеживать меняющиеся параметры и не допускать их превышения.

В котельных установках наибольшее применение получили термометры сопротивления медные (ТСМ). Термометрами сопротивления можно измерять температуры от -50 до +600°С.

Электронные термопары

При нагревании эти приборы генерируют ток, что и позволяет измерять температуру. Принцип действия основан на замерах термоэлектродвижущей силы. Диапазон измерений в этом случае — от 0 до +1800 градусов.

Манометрические

Такие термометры учитывают зависимость между температурными показателями и давлением газа. В измеряемую среду помещают термобаллон, соединенный с манометром латунной трубкой. При нагреве термобаллона давление внутри него увеличивается, и эта величина измеряется манометром. Таким образом проводят замеры температуры в диапазоне от -160 до +600 градусов.

Бесконтактные пирометры

В основе этих приборов — инфракрасные датчики, считывающие уровень излучения. Они подразделяются на два вида: яркостные, проводящие измерения излучений на определенной длине волны (диапазон — от +100 до +6000 градусов), и радиационные, когда определяется тепловое действие лучеиспускания (от -50 до +2000 градусов).

Они могут использоваться в том числе и для определения температуры нагретого металла, а также при наладке и испытаниях котлов.

Виды термометров по используемым материалам

Здесь различают 7 категорий:

  1. Жидкостные. Представляют собой корпус, заполненный жидкостью, которая подвержена температурному расширению. Колба с жидкостью прикладывается к шкале. При нагреве жидкость расширяется, и столбик растет, а при охлаждении — наоборот, сжимается (уменьшается). Погрешность измерений такими приборами составляет менее 0,1 градуса.
  2. Газовые. Принцип действия — тот же, что и у жидкостных, но в качестве заполнителя для колбы выбирается инертный газ. Это позволяет существенно увеличить температурный диапазон измерения (если для жидкостных предел — +600 градусов, то для газовых — +1000 градусов). С их помощью можно измерять температуру в различных раскаленных жидких средах.
  3. Механические. В основе действия — принцип деформации металлической спирали. Часто эти термометры комплектуются стрелочным “дисплеем”. Устанавливаются в спецтехнике, автомобилях, на автоматизированных линиях. Нечувствительны к ударам.
  4. Электрические. Работают, измеряя уровень сопротивления проводника при разных температурных показателях. В качестве проводника могут использоваться разные металлы (например, медь или платина). Соответственно, и диапазон измерений таких устройств будет отличаться. Чаще всего такие модели применяются в лабораторных условиях.
  5. Термоэлектрические. В конструкции предусмотрено два проводника, проводящие замеры по физическому принципу на основе эффекта Зеебека. Эти устройства очень точные, работают с погрешностью до 0,01 градуса и подходят для высокоточных измерений в производственных процессах, когда рабочая температура превышает 1000 градусов.
  6. Волоконно-оптические. Чувствительные датчики из оптоволокна (оно натягивается и сжимается или растягивается при изменении температуры, а прибор фиксирует степень преломления проходящего луча света).
    Допустимый диапазон измерений — до +400 градусов, а погрешность — не более 0,1 градуса.
  7. Инфракрасные. Непосредственный контакт с измеряемым веществом не требуется: прибор генерирует инфракрасный луч, который направляется на изучаемую поверхность. Это современный вид бесконтактных термометров, которые работают с точностью до нескольких градусов и подходят для высокотемпературных измерений. С их помощью можно измерять даже температуру открытого пламени.

Компания «Измеркон» предлагает как разные виды термометров, так и комбинированные устройства, в том числе манометры-термометры или гигрометры-термометры для автономной работы с энергонезависимой памятью, обеспечивающей постоянную фиксацию результатов измерений.

чем отличается водный градусник от комнатного

Водный и комнатный термометры для малыша – в чем отличия?

Появления малыша в доме — это большая радость. Но с ней приходят и дополнительные хлопоты, и новые проблемы, с которыми нужно учиться справляться. Для того, чтобы ваш ребенок был здоров, важно поддерживать правильную атмосферу в комнате. Сюда входит:

  • влажность;
  • температура воздуха;
  • воздухообменные процессы;
  • чистота.

Поэтому важно всегда проверять эти параметры. Кроме того, когда вы купаете своего малыша важно следить за градусом воды, ведь для вас вода будет приемлемой, а для малыша нет.  В этой статье мы рассмотрим два вида градусника: термометры для детской ванночки и для измерения температуры воздуха в комнате, и то, как их правильно использовать.

Преимущества водного термометра над комнатным

Водный градусник предназначен исключительно для того, чтобы измерять воду. Многие мамы замечают, что малыш попадая в казалось бы теплую ванночку начинает кричать. Они не понимают, что стало причиной такого поведения. Возможно это температура воды? Так оно и есть. Поэтому, приобрести такой прибор – это просто необходимость, ведь так вы обезопасите дите и себя саму от непредвиденных ситуаций и последствий.

Такой градусник имеет шкалу от 10 до 50 градусов плюс.

Для принятия водных процедур ребенка необходимо запомнить оптимальную температуру, которая ровняется 37 градусам. Обычно в магазине можно найти пластиковые водные термометры, что сделано не просто так. Небьющееся поверхность обезопасит вашего малыша от ранений при падении прибора. Лучше покупайте интересный и яркий вариант, так он будет играть роль обычной игрушки для малыша, а не странной и страшной вещицы, которую нужно бояться.

Достоинства комнатного термометра

Знать температуру в комнате очень важно. Ведь иногда случается так, что она либо выше, либо ниже оптимальной, что вызывает сильную сухость воздуха, а это в свою очередь отражается на здоровье и состоянии ребенка и может вызвать даже простудные симптомы. Кроме того, они украшают комнату и учат ваше дите следить за изменениями и познавать мир.  Здесь диапазон немного больше чем для измерения воды и составляет от 0 до 50 градусов. Оптимально находится в комнате с показанием в 21 градус. Вам остается лишь выбрать самый красивый и очень крепко прикрепить его к стене. Дизайнов на рынке есть очень много, от милых зверюшек до просто декоративных в виде цветочков – главное подберите такой, который подойдет для комнаты и интерьера в целом. 

Термометры для почвы | отАдоЯ.рф

Электронный термометр-м1т-4.

Диапазон измерения от -50 до +300 °С.

Точность измерения ± 1 °С.

Питание — батарейка.

Диаметр щупа – 5 мм.

Длина щупа – 150 мм.

Общая длина термометра – 230 мм.

Вес – 20 г.

Точность — ± 1 °С.

Цена деления шкалы 0,1 °С.

К достоинствам электронного термометра-м1т-4, похожего на отвертку, относятся его универсальность, простота использования, быстродействие и длинный металлический щуп, позволяющий замерять температуру в толще продукта.

Быстрое измерение обеспечивает спрятанная на кончике щупа чувствительная термопара. Она оперативно реагирует, в отличие от спиртовых и ртутных термометров, на малейшие изменения температуры.

Термометр имеет кнопку HOLD. Надавите на эту кнопку, и дисплей зафиксирует температуру на момент нажатия. Повторное нажатие на кнопку HOLD вернет режим измерения.

Любопытный длинный нос термометра

за несколько секунд определит температуру в любом месте, в любой среде.

Для замера температуры достаточно на несколько секунд опустить (или воткнуть) щуп термометра в тестируемую среду.

В комнате и на улице термометр-м1т-4 измерит температуру воздуха; на даче — почвы и воды в бассейне; на кухне — температуру внутри куска мяса и выпечки, супа в тарелке, вина в бутылке, чая в стакане.

Щуп-игла легко справится с определением температуры внутри вязких и сыпучих материалов, в страусином яйце, холодильной и морозильной камере.

Прижав щуп термометра к батарее отопления можно узнать температуру теплоносителя. Для точности показаний кончик щупа защитите от контакта с воздухом кусочкам нетеплопроводного материала: сухой губкой для мытья посуды, мягкой бумагой или тканью.

Используется термометр и при выгонке самогона и изготовлении декоративных гелевых и парафиновых свечей в домашних условиях.

Материалы для изготовления свечей можно купить в нашем магазине Сделай сам свечу.

Как сварить страусиное яйцо.

Сварите страусиное яйцо. Удивите гостей пищевой экзотикой.

Вес яиц африканских черных страусов, которых разводят фермеры и частники в нашей стране, от 1,1 до 1,7 кг. Средняя высота яйца — 180 мм, диаметр – 150 мм. Одно такое яйцо накормит десять человек.

Диаметр кастрюли для варки одного яйца – 200 мм, для двух – 300 мм.

Обычно яйцо всмятку варят около 45 минут, вкрутую – около часа. Для получения гарантированной «крутизны» яйцо страуса должно находиться в кипящей воде не менее 75 минут. Рекомендации не точные, т.к. время варки яйца заметно зависит от его веса.

Чтобы избежать ошибки в приготовлении дорогостоящего продукта, необходимо ориентироваться не на время варки, а на температуру в центре яйца. Для этого на линии максимального диаметра боковой поверхности просверлите отверстие. В отверстие на глубину 70 мм введите щуп термометра.

Скорлупа твердая, ее толщина 2 мм. Для проделки отверстия потребуется электродрель и сверло диаметром 5 мм. Отверстие перед варкой заткните выструганной из дерева короткой палочкой.

Желающим повторить ваш кулинарный успех, подскажите, где продают свежие страусиные яйца и недорогие электронные термометры с длинным щупом.

Термометры сопротивления. Термосопротивление

Термопреобразователи сопротивления оптимальны для высокоточных измерений в узких диапазонах измерения. Термосопротивления взаимозаменяемы и имеют практически линейные характеристики.

Выбрать и купить датчик температуры вы можете в интернет-магазине …


Области применения термосопротивлений

Термосопротивления обширно используются в промышленности  и их применение в той или иной среде зависит главным образом от корпуса прибора:

  • Нефтегазовый, топливно-энергетический комплекс
  • Машиностроение, автомобильная индустрия и спецтехника
  • Химическая промышленность, строительство
  • Сфера образования
  • Химические соединения
  • Вода, газ, пар
  • Жидкие, твердые, сыпучие продукты
  • Среды температурой от -200 до + 600°С (в среднем), требующие контроля температуры для систем автоматического управления, например:
    • Cистема контроля воды
    • Насосные системы
    • Системы охлаждения
    • Мониторинг температур масла, охлаждающей жидкости, топлива в подвижной технике и т. п.
  • Прочие АСУ


Назначение термопреобразователей сопротивления
  • Высокоточное (до тысячных долей градуса) и высокостабильное измерение температуры среды в средних температурных диапазонах (-200…+600 в большинстве случаев) с передачей сигнала в информационно-управляющую систему (+ используются 2, 3, и 4-х проводные схемы снятия данных)
  • Лабораторные стенды, эталонные измерения температур
  • Унифицированные системы, требующие высокой взаимозаменяемости датчиков


Преимущества

Основные достоинства термопреобразователей сопротивления:

  • Взаимозаменяемость (+ датчики стандартизированы по номинальным статическим характеристикам)
  • Высокая точность, а также стабильность измерений (может доходить до тысячных) + возможность исключения сопротивления линии связи из факторов, влияющих на точность (при 3 или 4-проводной схеме)
  • Близость характеристик к линейным (почти линейная зависимость)


Недостатки

Недостатки в основном исходят из принципа работы. Обращайте внимание:

  1. Требуется источник питания (тока) для запитывания резистора.
  2. Дороговизна относительно простых термопар.
  3. Малый в сравнении с термопарами диапазон измерений


Принцип работы термопреобразователей сопротивления

Термопреобразователи сопротивления представляют собой более сложные приборы, нежели простые резисторы. Их принцип работы основан на изменении электрического сопротивления полупроводниковых материалов либо металлов/сплавов под воздействием температуры окружающей среды. Для промышленных приборов выведены номинальные статические характеристики, на которые ориентируются производители.

На примере ТСП типовые схемы подключения выглядят так:

2-проводная схема. Питание и информационный сигнал имеют общую точку. Поэтому возникает небольшая погрешность из-за влияния сопротивления проводов.

3-проводная схема. Вход питания отдельный, но один из измерительных проводов имеет общую точку с минусом питания.

4-проводная схема. Вход питания и измерительные провода отделены друг от друга. В этой схеме обеспечивается наилучшая точность снятия сигнала.

Термометр клинический NexTemp (без ртути, нано-технология)

Внимание, в полной упаковке содержится 300 термометров, в рамках данного предложения мы продаем 1 термометр, в оригинальной коробке!

Лучшее предложение на Российском рынке, термометр, который можно всегда и везде иметь с собой!

Безопасный и точный, легкий и не требующий особых условий транспортировки!

Производитель: Medical Indicators Inc., США

Термометр NexTemp не имеет аналогов в России, термометр в виде цветовой индикаторной полоски, предназначен для измерения температуры оральным и подмышечным способами.

Область измерений 35.5°С — 40.4 °С. Точность измерения 0.1 °С. Термометр для многоразового использования.

Термометр не содержит латекса и ртути, элементов питания не требует, не бьется, влаги не боится. Безопасен и прост в применении. Не требует особых условий хранения и может всегда быть с вами, благодаря своим компактным размерам и мобильной упаковке вы всегда можете держать его при себе. Выглядит в виде картонного кард-кейса с подробной инструкцией.

БЕЗОПАСНЫЙ: NexTemp не содержит ртути, латекса и каких-либо токсичных веществ, не боится влаги, не ломается и не бьется, им невозможно пораниться.

ТОЧНЫЙ: Это устройство позволяет получить результат напрямую, без использования сложных микросхем и элементов питания, которые могут сломаться или внести погрешность в измерения, точность 0,1°С. Использование чрезвычайно просто.

БЫСТРЫЙ: Измерение температуры потребует не больше 1-3 минуты в зависимости от выбранного способа измерения – при подмышечном измерении 3 минуты, при оральном — 1 минута.

ЛЕГКИЙ В ИСПОЛЬЗОВАНИИ: Простая матричная конструкция обеспечивает четкую, достоверную информацию каждый раз, в любое время. Показания легко считываются, использование не требует сложных инструкций.

КЛИНИЧЕСКИ АПРОБИРОВАННЫЙ: NexTemp широко используется врачами в госпиталях США, Европе, Японии. Миллионы людей используют его уже более 5 лет.

ГИГИЕНИЧНЫЙ:Возможно самое лучшее это то, что этот термометр можно использовать как действительно персональный, каждый в семье может иметь собственный. При раздельном использовании никакого риска переноса инфекции, что возможно при использовании одного термометра для всех.

МОБИЛЬНЫЙ: Поскольку NexTemp не требует особых условий хранения – это то, что может быть всегда с собой: дома, на работе, отдыхе, в поездке.

СОВРЕМЕННЫЙ: В NexTemp использована передовая технология точного фазового измерения, что позволило создать этот компактный, долговечный, точный термометр.

МНОГОРАЗОВЫЙ • БЫСТРЫЙ • БЕЗОПАСНЫЙ

Термометр (градусник) без ртути Geratherm Classic

Градусник Geratherm Classic — классический термометр БЕЗ РТУТИ! Это единственный в мире термометр, который разработан по уникальной технологии «Geratherm Medical AG » с использованием безопасного жидкого металла — ГАЛИНСТАНА® вместо ртути. ГАЛИНСТАН® — единственный в мире заменитель ртути — сплав Галлия, Индия и Олова. Он нетоксичен и безопасен для человека. Термометры  Geratherm Classic соответствуют требованиям Европейских норм и стандартов и гарантированно безопасны при использовании. Новые приборы изготовлены из закаленного стекла повышенной прочности.

В большинстве развитых стран запрещается использование ртути в производстве термометров, тонометров и др., так как пары ртути из разбитого термометра при вдыхании влияют на легкие, почки и мозг, а при попадании ртути в сточные воды образуются высокотоксичные соединения, которые накапливаются впоследствии в рыбе и морепродуктах.

Такой термометр можно использовать и дома для детей, взрослых и пожилых людей, и в больницах, и медицинских кабинетах детских садов и школ. Он легко подвергается дезинфекции (абсолютно водонепроницаем).

Применение жидкого металла ГАЛИНСТАНА® в измерительной технике дает возможность полностью исключить риск, возникающий от воздействия тяжелых металлов на людей, экосистему и на дикую природу.

В нашем магазине вы также можете купить универсальный цифровой термометр DT-623 от AND.

Характеристики:

  • Без ртути! (заменитель — безопасный жидкий металл Галинстан).
  • Диапазон измерений: 35-42°С.
  • Точность измерения — 0,1°С.
  • Время измерения:3 — 5 минут.
  • Материал — закаленное стекло повышенной прочности.
  • 100% Водонепроницаемый.
  • Прочный пластиковый футляр для хранения.
  • Гарантия — 99 лет!
  • Производство — Германия.
 

Вместе дешевле:

+

=

+

=

+

=

Способ измерения Под мышкой
Метод измерения Галинстан (безртутный)
Диапазон измерения 35—42°С
Время измерения 3-5 мин.
Память Нет
Водонепроницаемость
Тип термометра Термометр измерения температуры тела
Производитель
ПроизводительGeratherm Medical AG, Germany / Гератерм Медикал АГ, Германия
Страна производстваГермания
Гарантия производителя36 месяцев
Параметры для транспортных компаний
Высота упаковки, см3
Ширина упаковки, см2
Длина упаковки, см15
Вес с упаковкой, г100

Отзывов пока нет

История термометра | Наука и жизнь

Термометр, так глубоко вошедший в наш быт, имеет свою весьма занимательную историю.

Рис. 1. Слева — воздушный термометр Галилея; справа — аналогичный термометр Ван-Дреббеля. Рис. 2. Усовершенствованный термометр Ван-Дреббеля. Рис. 3. Термометр флорентийских академиков.

Рис. 4. Термометр с очень длинной, причудливо изогнутой трубкой.

Рис. 5. Термометр со стеклянными поплавками — «картезианскими водолазами». Рис. 6. Термометр в виде черепахи для измерения подмышкой температуры человеческого тела.

Рис. 7. Схема устройства болометра.

Идея создания прибора для измерения температуры впервые возникла у голландского естествоиспытателя Ван-Гельмонта (1577—1644), а первый «термометр» был сконструирован итальянским физиком Галилеем в 1597 г. Он состоял из стеклянной трубочки с шаровидным расширением на одном конце. В открытое горлышко трубки была введена капелька ртути. При изменении температуры воздуха внутри шарика ртутная «пробка» соответственно то поднималась, то опускалась.

Однако фактическим изобретателем термометра считают голландца Ван-Дреббеля (1572—1632). Его заслуга в том, что он использовал для своего прибора способность газов значительно изменять свой, объем при относительно малых колебаниях температуры. Он взял довольно большой сосуд, до половины наполненный водой, и стеклянную трубочку с шарообразным расширением на одном ее конце. Её закупоренный конец был опущен под воду и там открыт. В результате вода осталась только в части трубки. При нагревании шара, вследствие расширения находившегося в нем воздуха, наблюдалось понижение уровня воды в трубке, и наоборот.

В дальнейшем Ван-Дреббель упростил свой термометр, причем введение воды в коленчатую трубку производилось путем сильного нагревания шара и последующего его охлаждения.

Вскоре ввиду относительно высокой температуры замерзания вода была заменена смесью из трех частей воды и одной части азотной кислоты. Для окрашивания сюда добавляли немного медного купороса. Хотя такие термометры были весьма чувствительны, однако они, в сущности, являлись «баротермоскопами», т. с. приборами, показания которых зависели от изменений атмосферного давления.

Первый термометр в современном смысле слова был сконструирован во Флорентийской академии (Италия). Он состоял из стеклянной трубочки, закрытой наверху и соединенной нижним концом со стеклянным полым шариком. Термометрической жидкостью служил подкрашенный винный спирт. Для наполнения резервуара шарик термометра сильно нагревали, в результате чего воздух разрежался настолько, что большая его часть выходила наружу. Затем открытый конец трубки погружали в окрашенный спирт, который поднимался в ней и заполнял не только ее, но и шарик. После этого термометр охлаждали так, чтобы осталась пустой приблизительно половина трубки, и запаивали открытый ее конец.

Это было слишком сложно.

В дальнейшем прибор наполняли окрашенным спиртом настолько, чтобы спирт заполнил приблизительно четверть длины трубки, и нагревали до тех пор, пока жидкость не поднималась почти до верхушки трубки (при предельно выкачанном воздухе), и тотчас же трубку запаивали. Изготовленные таким путем термометры были почти так же чувствительны, как и современные.

Значительно позже обнаружили, что размеры шарика резервуара не должны быть слишком большими, а кроме того, — что теплота должна передаваться, по мере возможности, его центральной частью. В результате появились термометры, сплющенные настолько причудливо, что они напоминали, по выражению современника, «даму, играющую в трик-трак». Для компактности вместо прямолинейных трубок применяли изогнутые несколько раз причем каждый физик делал их по-своему: флорентийские академики помещали ноль своей шкалы против того места, где устанавливался столбик жидкости термометра, поставленного в подвале их обсерватории. Другие принимали за ноль температуру максимальных зимних морозов. В термометрах того времени отмечали также деление «жарко», определяя его прикладыванием к руке лихорадочного больного в моменты пароксизмов или подвергая действию прямых лучей солнца в один из наиболее знойных летних дней.

В середине XVII в. известный физик Роберт Бойль (1627—1691) предложил принять за исходную точку температуру замерзания воды. Однако вскоре обнаружили, что для построения шкалы одной исходной точки недостаточно. Делансэ в своем труде о теплоте писал:

«Надо зимой проследить процесс замерзания воды и сделать на шкале термометра соответствующую пометку. Положите немного сливочного масла на шарик того же термометра и сделайте на его шкале вторую пометку против верхушки столбика в момент плавления масла. Расстояние на шкале между полученными двумя пометками разделите пополам и получите место третьей пометки — средней температуры между холодом и жаром. Каждый из полученных двух интервалов а свою очередь разделите на десять равных частей, кроме того, нанесите по четыре таких же деления ниже точки замерзания воды и выше точки плавления масла. В результате получите пятнадцать делений для холода и столько же для тепла».

Для повышения чувствительности термометров старались максимально увеличить длину трубок, которая доходила до 1 м! Однако такие термометры были слишком громоздки, и их перевозка была затруднительна. Поэтому пытались уменьшить, габарит термометров, делая ряд изгибов трубки.

В 1694 г. Шарль Ренальдини в Павии (Италия) изготовил термометр, нулевое деление которого было установлено после помещения шарика в смесь воды со льдом; вторая пометка соответствовала температуре кипящей воды. Ньютон (1643—1727) для установления верхней точки брал не спирт, а льняное масло, имеющее более высокую точку кипения. Его шкала состояла из шести делений, соответствовавших следующим температурам: 1° — тающего льда, 2° — человеческой крови, 3° — плавления воска, 4° — кипения воды, 6° — плавления сплава свинца, висмута и олова и 6° — плавления чисто свинца.

В середине XVII в. появилось несколько весьма интересных термометров. Один из них назывался «Картезианским водолазом» и состоял из продолговатого хрустального сосуда длиной 10—12 см и диаметром около 5 см. Этот сосуд герметически закрыт, и только в верхней его части имеется небольшое количество воздуха. Остальное пространство заполнено разбавленным спиртом, в котором плавают 10—12 маленьких шариков разного веса, имеющих форму слезы и изготовленных из тонкого дутого стекла и наполненных воздухом. При достаточном понижении температуры эти шарики всплывают на поверхность жидкости, а при повышении температуры окружающего пространства снова погружаются в жидкость на разную глубину. При очень высокой температуре все шарики опускаются на дно хрустального сосуда.

Делансэ по поводу такого термометра отметил: «Благодаря ему стало возможным обнаруживать усиление и ослабление лихорадки». Для этой цели были изготовлены специальные термометры аналогичного типа, имевшие форму маленькой черепахи, чтобы их было удобно вкладывать подмышку.

В процессе дальнейшего усовершенствования термометров особенно важным моментом была замена спирта ртутью, обладающей следующим основными преимуществами: она — хороший проводник тепла и быстро реагирует на перемены температуры окружающего пространства, не замерзает при обычных низких температурах и не кипит при сравнительно высоких, не смачивает стекла.

Голландский физик Даниэль Фаренгейт (1686—1736) впервые сконструировал (1714 г.) сравнимые термометры, использовав для них в качестве термометрической жидкости винный спирт. Ноль был поставлен против верхушки столба спирта при погружении резервуара в замораживающую смесь определенных количеств льда, воды и морской соли. Температура тающего льда по шкале Фаренгейта 32°. Кроме того, имеется еще третья постоянная точка, соответствующая нормальной температуре здорового человека, измеряемой во рту или подмышкой. В дальнейшем Фаренгейт внес в свой термометр два существенных улучшения: третьей точкой он установил температуру кипящей воды (212°) и заменил спирт ртутью. Шкала Фаренгейта и теперь применяется в Англии и США. Чтобы перевести градусы Фаренгейта в современные градусы Цельсия, надо из данного числа вычесть 32 и полученный остаток помножить на 5/9. И, наоборот, для перевода градусов Цельсия в градусы Фаренгейта число их следует помножить на 9/5 и к произведению прибавить 32. Французский физик Рене Антуан Реомюр изготовил в 1730 г. термометры с жидкостью, состоявшей из такой смеси воды со спиртом, что объем ее увеличивался в отношении 80/1000 при изменении температуры от ноля (тающий лед) до 80° (кипящая вода). Промежуток между этими отметками был разделен на 80 равных частей. Термометры Реомюра быстро распространились во Франции и Италии, однако качество их было хуже, чем ртутных.

Для этого периода характерно многообразие типов термометров и шкал: почти в каждой стране имелись свои,. Так например, Королевское физическое о-во в Лондоне применяло термометры со шкалой Реомюра, причем наряду с цифрами градусов была проставлены словесные обозначения, а именно: против 0 стояло «Очень жарко», 25° — «Жарко», 45° — «Умеренно» и 65° — «Мороз». Порядок обозначений был обратный— чем больше число градусов, тем ниже температура.

Последнее усовершенствование обозначений шкалы свел шведский ученый Андерс Цельсий (1701— 1744), предложивший деление всей шкалы на 100 градусов и указавший «а необходимость только двух постоянных точек — таяния льда и кипения воды. Эта конструкция термометров принята повсеместно и до сих пор применяется в науке и технике, а также и в повседневной жизни.

Измерение более высоких температур, неосуществимое ртутными термометрами (свыше 300°), производят специальными приборами — «пирометрами», основанными на измерении оптических или электрических свойств некоторых тел. Электрические пирометры бывают двух видов: одни основаны на изменении сопротивления проводников пропорционально повышению или понижению температуры, а другие — на изменении напряжения термоэлектрических токов.

Измерение еще больших температур, недоступное этим двум типам пирометров, производят приборами, основанными на измерении излучения накаленного тела. Различают два типа таких пирометров: оптический, при котором сравнивают интенсивность излучения данного тела с интенсивностью нормального излучателя, и радиационный, измеряющий общее количество энергии, излученное накаленным телом. Пользуясь такими пирометрами, можно измерять температуры до 2000°.

Для особо точных измерений температур служат так называемые «болометры» — чрезвычайно чувствительные приборы, основанные на измерении сопротивления тонкой платиновой проволоки при изменениях температуры. С помощью болометра удается измерять температуры менее одной миллионной доли градуса. В этом приборе изменения сопротивления металлической нити измеряют при помощи мостика Унтстона. Пределы применения болометра: абсолютный нуль — 273° и температура плавления платины — около 3000°.

La nature 1937, № 3015, 15/ХII.

Ртутные термометры | Агентство по охране окружающей среды США

На этой странице:


В ртутном термометре стеклянная трубка заполнена ртутью, и на трубке нанесена стандартная шкала температуры. При изменении температуры ртуть расширяется и сжимается, и температуру можно определить по шкале. Ртутные термометры можно использовать для определения температуры тела, жидкости и пара. Ртутные термометры используются в домашних условиях, в лабораторных экспериментах и ​​в промышленности.

Использование ртутных термометров в домашних условиях

Обычно ртутные термометры используются в домашних условиях, включая термометры для жарки и термометры для духовки, конфет и мяса.

Термометры для лихорадки

Термометры для ртутной лихорадки изготовлены из стекла размером с соломинку с серебристо-белой жидкостью внутри. Они распространены во многих домашних хозяйствах, школах и медицинских учреждениях. Существует два основных типа ртутных термометров, которые измеряют температуру тела:

  • Оральные / ректальные / детские термометры, содержащие около 0.61 грамм ртути
  • Термометры базальной температуры (используются для отслеживания незначительных изменений температуры тела), содержащие около 2,25 грамма ртути
Есть ли в моем термометре ртуть?
  • Если в вашем термометре нет жидкости, например, если для измерения температуры используется металлическая полоска или катушка (как в большинстве термометров для мяса), это не ртутный термометр.
  • Если жидкость в колбе термометра имеет любой цвет, кроме серебра, это не ртутный термометр.
  • Если жидкость в колбе термометра серебряная, это может быть:
    • Меркурий
    • Нетоксичное соединение, похожее на ртуть

Узнайте больше о том, как определить, есть ли ртуть в термометре для лихорадки.

Использование ртутных термометров в образовательных и медицинских учреждениях

Ртутные термометры могут использоваться во многих областях, включая химические эксперименты, водные и кислотные ванны, банки крови, печи и инкубаторы.

Использование ртутных термометров в промышленности

Ртутные термометры используются в:

  • Электростанции и трубопроводы
  • Химические цистерны и чаны
  • Отопительное и охлаждающее оборудование
  • Пивоварни, консервные заводы
  • Пекарни, кондитерские изделия
  • Молочные заводы, суда
  • Винодельни и винокурни
  • Малярные чайники

Поэтапный отказ от ртутных термометров в промышленных и лабораторных условиях

EPA предприняло усилия по сокращению использования ртутных термометров без лихорадки, используемых в промышленных условиях, где существуют подходящие альтернативы.В рамках партнерства EPA, разработанного с Национальным институтом стандартов и технологий (NIST), NIST больше не предоставляет услуги по калибровке ртутных термометров. Вы можете узнать больше о влиянии этого решения в пресс-релизе NIST за февраль 2011 года, в котором объявляется об изменении.

  • Нефтепереработка
  • Производство электроэнергии
  • Удаление отходов полихлорированных дифенилов (ПХД)

На сегодняшний день несколько стандартов ASTM были обновлены, чтобы одобрить использование безртутных альтернатив для измерения температуры.Просмотрите список обновленных стандартов ASTM.

Для получения дополнительной информации о поэтапном отказе от промышленных ртутных термометров посетите страницу EPA «Поэтапный отказ от ртутных термометров, используемых в промышленных и лабораторных условиях».

Ограничения на продажу термометров для ртутной лихорадки

Некоторые штаты и муниципалитеты приняли законы или постановления, запрещающие производство, продажу и / или распространение термометров для ртутной лихорадки. Это поможет устранить угрозу поломки термометра и последующего выброса паров ртути в помещение.Такие законы приняли по меньшей мере 13 штатов — Калифорния, Коннектикут, Иллинойс, Индиана, Мэн, Мэриленд, Массачусетс, Мичиган, Миннесота, Нью-Гэмпшир, Род-Айленд, Орегон и Вашингтон. На веб-сайте «Здравоохранение без вреда» представлена ​​информация о законах, постановлениях и декларациях конкретных штатов.

Альтернативы ртутным термометрам для лихорадки

В вашей местной аптеке имеется множество точных и надежных безртутных термометров для лихорадки. Наиболее похожими альтернативами термометрам для ртутной лихорадки являются цифровые термометры с батарейным питанием и солнечными батареями.Они похожи на ртутные термометры как по цене, так и по использованию. Все они могут использоваться перорально, ректально или в подмышечной впадине. Вам следует выбрать термометр, которым легко пользоваться и читать.

Если вы выбираете цифровой термометр с батарейным питанием, выберите тот, который содержит заменяемую батарею. Некоторые из этих термометров не имеют сменных батарей. Батарея представляет собой батарею типа «таблетка» и может содержать небольшое количество ртути, поэтому ее следует утилизировать в рамках программы сбора опасных отходов.Вы можете использовать локатор переработки Earth911, чтобы найти ближайший к вам центр переработки ртути.

Очистка и утилизация ртутного термометра

Если вы сломаете термометр во время его использования или неправильно утилизируете его, термометр будет выделять пары ртути, которые вредны для здоровья человека и окружающей среды.

Как работают термометры | Сравниваемые типы термометров

Как работают термометры | Типы сравниваемых термометров Рекламное объявление

Тебе сегодня жарко, или это только мне? И как мы могу сказать? Если я скажу, что сегодня жарче, чем вчера, и вы не согласны, как мы можем разрешить спор? Один простой способ — измерить температуру с помощью градусника в оба дня и сравните показания. Термометры — это простые научные инструменты, основанные на идее, что металлы изменяются. их поведение очень точное по мере того, как они нагреваются (получают больше тепловой энергии). Давайте подробнее рассмотрим, как работают эти удобные гаджеты.

Фото: Вот это я называю холодом! Этот круговой (стрелочный) термометр показывает температуру внутри моей морозильной камеры: около -30 ° C (внутренняя шкала) или -25 ° F (внешняя шкала). Это точно такая же температура, но измеряется двумя немного разными способами.

Термометры жидкостные

Фотография: Этот термометр содержит красную жидкость на спиртовой основе и имеет шкалу Цельсия (слева) и шкалу Фаренгейта (справа). Текущая температура составляет около 22 ° C или около 72 ° F.Шкала Фахенгейта названа в честь немецкого физика Даниэля Фаренгейта (1686–1736), который сделал первый ртутный термометр в начале 18 века. Шкала Цельсия названа в честь разработавшего ее шведского ученого Андерса Цельсия (1701–1744).

Самые простые термометры действительно просты! Они просто очень тонкие стеклянные пробирки, наполненные небольшим количеством серебристой жидкости (обычно ртуть — довольно специальный металл, жидкий при обычных, повседневных температурах). Когда ртуть нагревается, она расширяется (увеличивается в размерах) на величину это напрямую связано с температурой.Так что если температура увеличивается на 20 градусов, ртуть расширяется и поднимается по шкале вдвое больше, чем если бы повышение температуры всего на 10 градусов. Все, что нам нужно сделать, это отметить шкалу на стекле, и мы сможем легко определить температуру.

Как определить масштаб? Делаем градусы Цельсия (по Цельсию) термометр — это просто, потому что он основан на температуре льда и кипяток. Они называются двумя неподвижными точками. Мы Знайте, что лед имеет температуру, близкую к 0 ° C, а вода кипит при 100 ° C.Если мы окунем термометр в лед, то увидим, где уровень ртути достигает и отмечает самую низкую точку на нашей шкале, которая будет примерно 0 ° C. Аналогично, если мы окунем термометр в кипятка, мы можем подождать, пока поднимется ртуть, а затем сделать отметка, эквивалентная 100 ° C. Все, что нам нужно сделать, это разделить шкала между этими двумя фиксированными точками на 100 равных шагов («санти-градус» означает 100 делений) и, привет, у нас есть рабочий градусник!

Фото: Спиртовые термометры.Как вы можете видеть по красным линиям рядом с их шкалами, эти исторические термометры Dr Pepper от Dublin Bottling Works и W.P. Музей Клостера в Дублине, штат Техас, также содержит алкоголь. Фото Кэрол М. Хайсмит. Предоставлено: Коллекция фотографий Лиды Хилл Техас в американском проекте Кэрол М. Хайсмит, Библиотека Конгресса, Отдел эстампов и фотографий.

Ртуть или алкоголь?

Не во всех жидкостных термометрах используется ртуть. Если линия, которую вы видите на своем градуснике, красный, а не серебристый, как на картинке, ваш термометр наполненный жидкостью на спиртовой основе (например, этанолом).Какая разница? Ртуть токсична, хотя совершенно безопасно, если он запечатан внутри термометра. Однако если стеклянная трубка ртутного термометра происходит разрушение, что потенциально подвергает вас воздействию ядовитой жидкости внутри него. По этой причине спиртовые термометры обычно безопаснее, и они могут также может использоваться для измерения более низких температур (поскольку спирт имеет более низкую точку замерзания чем ртуть; это около -114 ° C или -170 ° F для чистого этанола по сравнению с примерно -40 ° C или -40 ° F для ртути).

Рекламные ссылки

Термометры циферблатные

Однако не все термометры работают таким образом. Тот, что показан в нашем На верхнем фото есть металлический указатель, который перемещается вверх и вниз по круговой шкала. Откройте один из этих термометров, и вы увидите указатель монтируется на свернутом в спираль куске металла, называемом биметаллической полосой, который предназначен для расширения и изгиба при его становится горячее (см. нашу статью о термостатах, чтобы узнать, как это работает). Чем выше температура, тем больше расширяется биметаллическая полоса и тем сильнее она толкает указатель вверх по шкале.

Изображение: Как работает циферблатный термометр: это механизм, который приводит в действие типичный циферблатный термометр, проиллюстрированный в патенте Чарльза В. Патнэма от 1905 года. Вверху мы видим обычную стрелку и циферблат. Нижнее изображение показывает, что происходит вокруг спины. Биметаллическая полоса (желтая) плотно свернута и прикреплена как к корпусу термометра, так и к стрелке. Он состоит из двух соединенных вместе разных металлов, которые при нагревании расширяются в разной степени.При изменении температуры биметаллическая полоса изгибается более или менее сильно (сжимается или расширяется), а прикрепленная к ней стрелка перемещается вверх или вниз по шкале. Произведение искусства из патента США 798 211: термометр любезно предоставлен Управлением по патентам и товарным знакам США.

Фото: Вот свернутая в спираль биметаллическая полоса настоящего термометра со шкалой (термометр морозильной камеры на нашем верхнем фото). Легко увидеть, как это работает: если повернуть стрелку рукой в ​​сторону более низких температур, спиральная полоска затянется; поверните указатель в другую сторону, и полоска ослабнет.

Термометры электронные

Одна проблема с ртутными и циферблатными термометрами заключается в том, что они при этом реагировать на перепады температуры. Электронный У термометров такой проблемы нет: вы просто касаетесь зондом термометра объект, температуру которого вы хотите измерить, и цифровой дисплей дает (почти) мгновенное считывание температуры.

Фото: Электронный медицинский термометр 2010 г. Ставите металлический зонд. у вас во рту или где-то еще на вашем теле, и считайте температуру на ЖК-дисплее.

Электронные термометры работают совершенно иначе, чем механические, использующие ртутные линии или вращающиеся указатели. Они основаны на идее, что сопротивление куска металла (легкость, с которой течет электричество через него) изменяется при изменении температуры. По мере того, как металлы становятся горячее, атомы внутри вибрируют сильнее по ним, электричеству труднее течь, и сопротивление возрастает. Точно так же, когда металлы остывают, электроны движутся более свободно, и сопротивление идет вниз.(При температурах, близких к абсолютному нулю, минимальной теоретически возможной температуре -273,15 ° C или -459,67 ° F, сопротивление полностью исчезает в результате явления, называемого сверхпроводимость.)

Электронный термометр работает, подавая напряжение на его металлический зонд и измерение силы тока, протекающего через него. Если вы опускаете зонд в кипящую воду, тепло воды делает электричество проходит через зонд с меньшей легкостью, поэтому сопротивление на точно измеримую величину. Микрочип внутри термометра измеряет сопротивление и преобразует его в измерение температуры.

Фото: Термометр электрического сопротивления 1912 года: Этот пример термометра сопротивления мостового типа был построен Лидсом и Нортрупом. и используется для измерения температуры в Национальном бюро стандартов США. (ныне NIST) в начале 20 века. Несмотря на его коренастый и неуклюжий вид, его точность составляет 0,0001 градус. Фото любезно предоставлено Национальным институтом стандартов и технологий цифровых коллекций, Гейтерсбург, Мэриленд 20899.

Основным преимуществом таких термометров является то, что они могут мгновенное считывание в любой температурной шкале, которую вы например, по Цельсию, по Фаренгейту или как там.Кроме одного из их недостатков в том, что они измеряют температуру от от момента к моменту, поэтому цифры, которые они показывают, могут довольно сильно колебаться резко, иногда затрудняя получение точных показаний.

В прецизионных электрических термометрах, известных как термометры сопротивления, используются четыре резистора, расположенных по ромбовидной схеме, называемой мостом Уитстона. Если три резистора имеют известные значения, сопротивление четвертого легко рассчитать. Если четвертый резистор выполнен в виде датчика температуры, такую ​​схему можно использовать как очень точный термометр: вычисляя его сопротивление (по его напряжению и току) позволяет нам рассчитать его температуру.

Измерение экстремальных температур

Если вы хотите измерить что-то слишком горячее или холодное для обычного термометра. ручка, понадобится термопара: хитрый прибор который измеряет температуру путем измерения электричества. И если вы не можете подойти достаточно близко, чтобы использовать даже термопару, можно попробовать пирометр, своего рода термометр, который определяет температуру объекта по электромагнитное излучение, которое он испускает.

Что такое температурная шкала?

Фото: Температурные шкалы линейны: определенное повышение температуры всегда перемещает вас на одно и то же расстояние вверх по шкале.Это не означает, что термометры должны быть прямыми, как линейки: это означает, что каждое деление температурной шкалы занимает точно такое же пространство (или, если хотите, ртутный, стрелочный или другой индикатор температуры должен двигайтесь так далеко, чтобы обозначать каждое новое деление при повышении или понижении температуры). Этот циферблатный термометр от газового котла показывает температуру вашего центрального отопления в градусах Цельсия с помощью круговой (но все же линейной) шкалы.

Для термометра не обязательно должна быть нанесена шкала или цифры.Представьте себе, если вы были на необитаемом острове и наткнулись на старый градусник на песке с шкала и цифры стерлись, но в остальном работает нормально. Вы все еще можете использовать это получить представление о температурах. Вы могли бы использовать это очень грубо, чтобы сказать такие вещи, как: «Уровень ртути примерно на полпути, что выше, чем он был вчера, поэтому сегодня должно быть жарче».

Лучше всего поставить свою шкалу на термометр. Во-первых, вам нужно найти что-то действительно холодное (например, кусок льда), поместите термометр на нем и поцарапайте стекло, чтобы отметить уровень ртути.Тогда ты мог бы сделать то же самое чем-нибудь горячим (кипятком) и еще раз отметьте уровень ртути. Мы называем это два опорных уровня температуры фиксированных точек. Чтобы сделать шкалу термометра, все, что нам нужно сделать, это разделить расстояние между двумя фиксированные точки на множество секций одинаковой длины. Вот как по Цельсию термометр получил свое название: у него 100 («центовых») секций («градаций») между неподвижные точки льда и пара. Какие бывают разные температурные шкалы и как они проработаны?

Масштаб Фиксированная точка (и)

Фаренгейт

Первоначально 32 ° F (тающий лед в соли) и 96 ° F (определение температуры тела Даниэля Фаренгейта).

Цельсия

0 ° C (точка замерзания воды) и 100 ° C (точка кипения воды).

Кельвин

Определяется в соответствии с тройной точкой воды (где твердое тело, жидкость и пар находятся в равновесии), которая составляет 273,16 К.

ITS-90 (Международная температурная шкала)

Использует множество различных точек в разных частях своего диапазона.Видеть ИТС-90 подробнее Детали.

Как соотносятся градусы Цельсия и Фаренгейта?

Вы, наверное, знаете, как преобразовать температуру Цельсия в градусы Фаренгейта: умножьте на 9/5 (или 1,8), а затем добавьте 32. Чтобы преобразовать По Фаренгейту на Цельсию вы делаете обратное: вычитаете 32 и умножаете на 5/9 (или делите на 1,8, что одно и то же). Когда вы слышите, как в прогнозах погоды указываются температуры по Цельсию и их эквиваленты по Фаренгейту, вы можете почувствовать, что связь между ними немного странная и сбивающая с толку, потому что они кажутся такими разными.Но если вы нанесете их на диаграмму (как показано ниже), вы увидите, что обе шкалы абсолютно линейны, и каждое повышение температуры, которое добавляет еще 10 ° C, добавляет 18 ° F.

Диаграмма

: шкала температуры Цельсия показана синим цветом, а шкала Фаренгейта — красным цветом. Каждая точка на диаграмме показывает два эквивалентных измерения для определенной температуры, например, 20 ° C. равно 68 ° F. Обе шкалы явно линейны: увеличение на 10 ° C равно увеличению на 18 ° F.

Рекламные ссылки

Узнать больше

На сайте

На других сайтах

Книги для юных читателей

  • Как мы измеряем температуру? Криса Вудфорда. Гарет Стивенс, 2013 / Blackbirch, 2005. Одна из моих собственных книг для юных читателей (7–9 лет). Акцент здесь делается на температуре как на практической, повседневной форме математики.
  • градусов по Фаренгейту, Цельсию и их температурные шкалы Йоминг С. Лин. PowerKIDS Press / Розен, 2012.Историческое введение, в котором рассказываются истории Даниэля Фаренгейта и Андерса Цельсия наряду с практическим измерением температуры.
  • Измерь! Температура Кейси Рэнд. Raintree, 2010. Базовое введение для детей в возрасте от 7 до 9 лет, включающее некоторые темы, связанные с погодой и изменением климата.
  • Температура: нагревание и охлаждение Дарлин Р. Стилле. Picture Window Books, 2004. Альтернативное 24-страничное введение для читателей чуть младше.
  • Термометры Адель Ричардсон.Capstone, 2004. 32-страничное введение, охватывающее те же темы, что и эта статья, но для более молодых читателей (в возрасте 6–8 лет или около того).

Книги для старших читателей

  • Изобретение температуры: измерение и научный прогресс Хасока Чанга. Oxford University Press, 2004. История о том, как люди научились измерять температуру термометрами. Достаточно философская и научная книга, но тем не менее вполне читаемая.
  • Измерение температуры Л. Михальски.Wiley, 2001. Подробное руководство по точным измерениям температуры для ученых и инженеров.
  • Принципы и методы измерения температуры Томас Дональд МакГи. Wiley-IEEE, 1988. Подробный (почти 600 страниц) учебник, охватывающий температурные шкалы и все виды датчиков температуры, включая пирометры, термисторы и термопары.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США.Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2008, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Следуйте за нами

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом друзьям с помощью:

Медиа-запросы?

Вы журналист, у вас есть вопрос для СМИ или просьба об интервью? Вы можете связаться со мной для получения помощи здесь.

Цитируйте эту страницу

Вудфорд, Крис. (2008/2020) Термометры. Получено с https://www.explainthatstuff.com/thermometer.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте …

Как работают термометры | Сравниваемые типы термометров

Как работают термометры | Типы сравниваемых термометров Рекламное объявление

Тебе сегодня жарко, или это только мне? И как мы могу сказать? Если я скажу, что сегодня жарче, чем вчера, и вы не согласны, как мы можем разрешить спор? Один простой способ — измерить температуру с помощью градусника в оба дня и сравните показания. Термометры — это простые научные инструменты, основанные на идее, что металлы изменяются. их поведение очень точное по мере того, как они нагреваются (получают больше тепловой энергии). Давайте подробнее рассмотрим, как работают эти удобные гаджеты.

Фото: Вот это я называю холодом! Этот круговой (стрелочный) термометр показывает температуру внутри моей морозильной камеры: около -30 ° C (внутренняя шкала) или -25 ° F (внешняя шкала). Это точно такая же температура, но измеряется двумя немного разными способами.

Термометры жидкостные

Фотография: Этот термометр содержит красную жидкость на спиртовой основе и имеет шкалу Цельсия (слева) и шкалу Фаренгейта (справа). Текущая температура составляет около 22 ° C или около 72 ° F.Шкала Фахенгейта названа в честь немецкого физика Даниэля Фаренгейта (1686–1736), который сделал первый ртутный термометр в начале 18 века. Шкала Цельсия названа в честь разработавшего ее шведского ученого Андерса Цельсия (1701–1744).

Самые простые термометры действительно просты! Они просто очень тонкие стеклянные пробирки, наполненные небольшим количеством серебристой жидкости (обычно ртуть — довольно специальный металл, жидкий при обычных, повседневных температурах). Когда ртуть нагревается, она расширяется (увеличивается в размерах) на величину это напрямую связано с температурой.Так что если температура увеличивается на 20 градусов, ртуть расширяется и поднимается по шкале вдвое больше, чем если бы повышение температуры всего на 10 градусов. Все, что нам нужно сделать, это отметить шкалу на стекле, и мы сможем легко определить температуру.

Как определить масштаб? Делаем градусы Цельсия (по Цельсию) термометр — это просто, потому что он основан на температуре льда и кипяток. Они называются двумя неподвижными точками. Мы Знайте, что лед имеет температуру, близкую к 0 ° C, а вода кипит при 100 ° C.Если мы окунем термометр в лед, то увидим, где уровень ртути достигает и отмечает самую низкую точку на нашей шкале, которая будет примерно 0 ° C. Аналогично, если мы окунем термометр в кипятка, мы можем подождать, пока поднимется ртуть, а затем сделать отметка, эквивалентная 100 ° C. Все, что нам нужно сделать, это разделить шкала между этими двумя фиксированными точками на 100 равных шагов («санти-градус» означает 100 делений) и, привет, у нас есть рабочий градусник!

Фото: Спиртовые термометры.Как вы можете видеть по красным линиям рядом с их шкалами, эти исторические термометры Dr Pepper от Dublin Bottling Works и W.P. Музей Клостера в Дублине, штат Техас, также содержит алкоголь. Фото Кэрол М. Хайсмит. Предоставлено: Коллекция фотографий Лиды Хилл Техас в американском проекте Кэрол М. Хайсмит, Библиотека Конгресса, Отдел эстампов и фотографий.

Ртуть или алкоголь?

Не во всех жидкостных термометрах используется ртуть. Если линия, которую вы видите на своем градуснике, красный, а не серебристый, как на картинке, ваш термометр наполненный жидкостью на спиртовой основе (например, этанолом).Какая разница? Ртуть токсична, хотя совершенно безопасно, если он запечатан внутри термометра. Однако если стеклянная трубка ртутного термометра происходит разрушение, что потенциально подвергает вас воздействию ядовитой жидкости внутри него. По этой причине спиртовые термометры обычно безопаснее, и они могут также может использоваться для измерения более низких температур (поскольку спирт имеет более низкую точку замерзания чем ртуть; это около -114 ° C или -170 ° F для чистого этанола по сравнению с примерно -40 ° C или -40 ° F для ртути).

Рекламные ссылки

Термометры циферблатные

Однако не все термометры работают таким образом. Тот, что показан в нашем На верхнем фото есть металлический указатель, который перемещается вверх и вниз по круговой шкала. Откройте один из этих термометров, и вы увидите указатель монтируется на свернутом в спираль куске металла, называемом биметаллической полосой, который предназначен для расширения и изгиба при его становится горячее (см. нашу статью о термостатах, чтобы узнать, как это работает). Чем выше температура, тем больше расширяется биметаллическая полоса и тем сильнее она толкает указатель вверх по шкале.

Изображение: Как работает циферблатный термометр: это механизм, который приводит в действие типичный циферблатный термометр, проиллюстрированный в патенте Чарльза В. Патнэма от 1905 года. Вверху мы видим обычную стрелку и циферблат. Нижнее изображение показывает, что происходит вокруг спины. Биметаллическая полоса (желтая) плотно свернута и прикреплена как к корпусу термометра, так и к стрелке. Он состоит из двух соединенных вместе разных металлов, которые при нагревании расширяются в разной степени.При изменении температуры биметаллическая полоса изгибается более или менее сильно (сжимается или расширяется), а прикрепленная к ней стрелка перемещается вверх или вниз по шкале. Произведение искусства из патента США 798 211: термометр любезно предоставлен Управлением по патентам и товарным знакам США.

Фото: Вот свернутая в спираль биметаллическая полоса настоящего термометра со шкалой (термометр морозильной камеры на нашем верхнем фото). Легко увидеть, как это работает: если повернуть стрелку рукой в ​​сторону более низких температур, спиральная полоска затянется; поверните указатель в другую сторону, и полоска ослабнет.

Термометры электронные

Одна проблема с ртутными и циферблатными термометрами заключается в том, что они при этом реагировать на перепады температуры. Электронный У термометров такой проблемы нет: вы просто касаетесь зондом термометра объект, температуру которого вы хотите измерить, и цифровой дисплей дает (почти) мгновенное считывание температуры.

Фото: Электронный медицинский термометр 2010 г. Ставите металлический зонд. у вас во рту или где-то еще на вашем теле, и считайте температуру на ЖК-дисплее.

Электронные термометры работают совершенно иначе, чем механические, использующие ртутные линии или вращающиеся указатели. Они основаны на идее, что сопротивление куска металла (легкость, с которой течет электричество через него) изменяется при изменении температуры. По мере того, как металлы становятся горячее, атомы внутри вибрируют сильнее по ним, электричеству труднее течь, и сопротивление возрастает. Точно так же, когда металлы остывают, электроны движутся более свободно, и сопротивление идет вниз.(При температурах, близких к абсолютному нулю, минимальной теоретически возможной температуре -273,15 ° C или -459,67 ° F, сопротивление полностью исчезает в результате явления, называемого сверхпроводимость.)

Электронный термометр работает, подавая напряжение на его металлический зонд и измерение силы тока, протекающего через него. Если вы опускаете зонд в кипящую воду, тепло воды делает электричество проходит через зонд с меньшей легкостью, поэтому сопротивление на точно измеримую величину. Микрочип внутри термометра измеряет сопротивление и преобразует его в измерение температуры.

Фото: Термометр электрического сопротивления 1912 года: Этот пример термометра сопротивления мостового типа был построен Лидсом и Нортрупом. и используется для измерения температуры в Национальном бюро стандартов США. (ныне NIST) в начале 20 века. Несмотря на его коренастый и неуклюжий вид, его точность составляет 0,0001 градус. Фото любезно предоставлено Национальным институтом стандартов и технологий цифровых коллекций, Гейтерсбург, Мэриленд 20899.

Основным преимуществом таких термометров является то, что они могут мгновенное считывание в любой температурной шкале, которую вы например, по Цельсию, по Фаренгейту или как там.Кроме одного из их недостатков в том, что они измеряют температуру от от момента к моменту, поэтому цифры, которые они показывают, могут довольно сильно колебаться резко, иногда затрудняя получение точных показаний.

В прецизионных электрических термометрах, известных как термометры сопротивления, используются четыре резистора, расположенных по ромбовидной схеме, называемой мостом Уитстона. Если три резистора имеют известные значения, сопротивление четвертого легко рассчитать. Если четвертый резистор выполнен в виде датчика температуры, такую ​​схему можно использовать как очень точный термометр: вычисляя его сопротивление (по его напряжению и току) позволяет нам рассчитать его температуру.

Измерение экстремальных температур

Если вы хотите измерить что-то слишком горячее или холодное для обычного термометра. ручка, понадобится термопара: хитрый прибор который измеряет температуру путем измерения электричества. И если вы не можете подойти достаточно близко, чтобы использовать даже термопару, можно попробовать пирометр, своего рода термометр, который определяет температуру объекта по электромагнитное излучение, которое он испускает.

Что такое температурная шкала?

Фото: Температурные шкалы линейны: определенное повышение температуры всегда перемещает вас на одно и то же расстояние вверх по шкале.Это не означает, что термометры должны быть прямыми, как линейки: это означает, что каждое деление температурной шкалы занимает точно такое же пространство (или, если хотите, ртутный, стрелочный или другой индикатор температуры должен двигайтесь так далеко, чтобы обозначать каждое новое деление при повышении или понижении температуры). Этот циферблатный термометр от газового котла показывает температуру вашего центрального отопления в градусах Цельсия с помощью круговой (но все же линейной) шкалы.

Для термометра не обязательно должна быть нанесена шкала или цифры.Представьте себе, если вы были на необитаемом острове и наткнулись на старый градусник на песке с шкала и цифры стерлись, но в остальном работает нормально. Вы все еще можете использовать это получить представление о температурах. Вы могли бы использовать это очень грубо, чтобы сказать такие вещи, как: «Уровень ртути примерно на полпути, что выше, чем он был вчера, поэтому сегодня должно быть жарче».

Лучше всего поставить свою шкалу на термометр. Во-первых, вам нужно найти что-то действительно холодное (например, кусок льда), поместите термометр на нем и поцарапайте стекло, чтобы отметить уровень ртути.Тогда ты мог бы сделать то же самое чем-нибудь горячим (кипятком) и еще раз отметьте уровень ртути. Мы называем это два опорных уровня температуры фиксированных точек. Чтобы сделать шкалу термометра, все, что нам нужно сделать, это разделить расстояние между двумя фиксированные точки на множество секций одинаковой длины. Вот как по Цельсию термометр получил свое название: у него 100 («центовых») секций («градаций») между неподвижные точки льда и пара. Какие бывают разные температурные шкалы и как они проработаны?

Масштаб Фиксированная точка (и)

Фаренгейт

Первоначально 32 ° F (тающий лед в соли) и 96 ° F (определение температуры тела Даниэля Фаренгейта).

Цельсия

0 ° C (точка замерзания воды) и 100 ° C (точка кипения воды).

Кельвин

Определяется в соответствии с тройной точкой воды (где твердое тело, жидкость и пар находятся в равновесии), которая составляет 273,16 К.

ITS-90 (Международная температурная шкала)

Использует множество различных точек в разных частях своего диапазона.Видеть ИТС-90 подробнее Детали.

Как соотносятся градусы Цельсия и Фаренгейта?

Вы, наверное, знаете, как преобразовать температуру Цельсия в градусы Фаренгейта: умножьте на 9/5 (или 1,8), а затем добавьте 32. Чтобы преобразовать По Фаренгейту на Цельсию вы делаете обратное: вычитаете 32 и умножаете на 5/9 (или делите на 1,8, что одно и то же). Когда вы слышите, как в прогнозах погоды указываются температуры по Цельсию и их эквиваленты по Фаренгейту, вы можете почувствовать, что связь между ними немного странная и сбивающая с толку, потому что они кажутся такими разными.Но если вы нанесете их на диаграмму (как показано ниже), вы увидите, что обе шкалы абсолютно линейны, и каждое повышение температуры, которое добавляет еще 10 ° C, добавляет 18 ° F.

Диаграмма

: шкала температуры Цельсия показана синим цветом, а шкала Фаренгейта — красным цветом. Каждая точка на диаграмме показывает два эквивалентных измерения для определенной температуры, например, 20 ° C. равно 68 ° F. Обе шкалы явно линейны: увеличение на 10 ° C равно увеличению на 18 ° F.

Рекламные ссылки

Узнать больше

На сайте

На других сайтах

Книги для юных читателей

  • Как мы измеряем температуру? Криса Вудфорда. Гарет Стивенс, 2013 / Blackbirch, 2005. Одна из моих собственных книг для юных читателей (7–9 лет). Акцент здесь делается на температуре как на практической, повседневной форме математики.
  • градусов по Фаренгейту, Цельсию и их температурные шкалы Йоминг С. Лин. PowerKIDS Press / Розен, 2012.Историческое введение, в котором рассказываются истории Даниэля Фаренгейта и Андерса Цельсия наряду с практическим измерением температуры.
  • Измерь! Температура Кейси Рэнд. Raintree, 2010. Базовое введение для детей в возрасте от 7 до 9 лет, включающее некоторые темы, связанные с погодой и изменением климата.
  • Температура: нагревание и охлаждение Дарлин Р. Стилле. Picture Window Books, 2004. Альтернативное 24-страничное введение для читателей чуть младше.
  • Термометры Адель Ричардсон.Capstone, 2004. 32-страничное введение, охватывающее те же темы, что и эта статья, но для более молодых читателей (в возрасте 6–8 лет или около того).

Книги для старших читателей

  • Изобретение температуры: измерение и научный прогресс Хасока Чанга. Oxford University Press, 2004. История о том, как люди научились измерять температуру термометрами. Достаточно философская и научная книга, но тем не менее вполне читаемая.
  • Измерение температуры Л. Михальски.Wiley, 2001. Подробное руководство по точным измерениям температуры для ученых и инженеров.
  • Принципы и методы измерения температуры Томас Дональд МакГи. Wiley-IEEE, 1988. Подробный (почти 600 страниц) учебник, охватывающий температурные шкалы и все виды датчиков температуры, включая пирометры, термисторы и термопары.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США.Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2008, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Следуйте за нами

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом друзьям с помощью:

Медиа-запросы?

Вы журналист, у вас есть вопрос для СМИ или просьба об интервью? Вы можете связаться со мной для получения помощи здесь.

Цитируйте эту страницу

Вудфорд, Крис. (2008/2020) Термометры. Получено с https://www.explainthatstuff.com/thermometer.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте …

Как работают термометры | Сравниваемые типы термометров

Как работают термометры | Типы сравниваемых термометров Рекламное объявление

Тебе сегодня жарко, или это только мне? И как мы могу сказать? Если я скажу, что сегодня жарче, чем вчера, и вы не согласны, как мы можем разрешить спор? Один простой способ — измерить температуру с помощью градусника в оба дня и сравните показания. Термометры — это простые научные инструменты, основанные на идее, что металлы изменяются. их поведение очень точное по мере того, как они нагреваются (получают больше тепловой энергии). Давайте подробнее рассмотрим, как работают эти удобные гаджеты.

Фото: Вот это я называю холодом! Этот круговой (стрелочный) термометр показывает температуру внутри моей морозильной камеры: около -30 ° C (внутренняя шкала) или -25 ° F (внешняя шкала). Это точно такая же температура, но измеряется двумя немного разными способами.

Термометры жидкостные

Фотография: Этот термометр содержит красную жидкость на спиртовой основе и имеет шкалу Цельсия (слева) и шкалу Фаренгейта (справа). Текущая температура составляет около 22 ° C или около 72 ° F.Шкала Фахенгейта названа в честь немецкого физика Даниэля Фаренгейта (1686–1736), который сделал первый ртутный термометр в начале 18 века. Шкала Цельсия названа в честь разработавшего ее шведского ученого Андерса Цельсия (1701–1744).

Самые простые термометры действительно просты! Они просто очень тонкие стеклянные пробирки, наполненные небольшим количеством серебристой жидкости (обычно ртуть — довольно специальный металл, жидкий при обычных, повседневных температурах). Когда ртуть нагревается, она расширяется (увеличивается в размерах) на величину это напрямую связано с температурой.Так что если температура увеличивается на 20 градусов, ртуть расширяется и поднимается по шкале вдвое больше, чем если бы повышение температуры всего на 10 градусов. Все, что нам нужно сделать, это отметить шкалу на стекле, и мы сможем легко определить температуру.

Как определить масштаб? Делаем градусы Цельсия (по Цельсию) термометр — это просто, потому что он основан на температуре льда и кипяток. Они называются двумя неподвижными точками. Мы Знайте, что лед имеет температуру, близкую к 0 ° C, а вода кипит при 100 ° C.Если мы окунем термометр в лед, то увидим, где уровень ртути достигает и отмечает самую низкую точку на нашей шкале, которая будет примерно 0 ° C. Аналогично, если мы окунем термометр в кипятка, мы можем подождать, пока поднимется ртуть, а затем сделать отметка, эквивалентная 100 ° C. Все, что нам нужно сделать, это разделить шкала между этими двумя фиксированными точками на 100 равных шагов («санти-градус» означает 100 делений) и, привет, у нас есть рабочий градусник!

Фото: Спиртовые термометры.Как вы можете видеть по красным линиям рядом с их шкалами, эти исторические термометры Dr Pepper от Dublin Bottling Works и W.P. Музей Клостера в Дублине, штат Техас, также содержит алкоголь. Фото Кэрол М. Хайсмит. Предоставлено: Коллекция фотографий Лиды Хилл Техас в американском проекте Кэрол М. Хайсмит, Библиотека Конгресса, Отдел эстампов и фотографий.

Ртуть или алкоголь?

Не во всех жидкостных термометрах используется ртуть. Если линия, которую вы видите на своем градуснике, красный, а не серебристый, как на картинке, ваш термометр наполненный жидкостью на спиртовой основе (например, этанолом).Какая разница? Ртуть токсична, хотя совершенно безопасно, если он запечатан внутри термометра. Однако если стеклянная трубка ртутного термометра происходит разрушение, что потенциально подвергает вас воздействию ядовитой жидкости внутри него. По этой причине спиртовые термометры обычно безопаснее, и они могут также может использоваться для измерения более низких температур (поскольку спирт имеет более низкую точку замерзания чем ртуть; это около -114 ° C или -170 ° F для чистого этанола по сравнению с примерно -40 ° C или -40 ° F для ртути).

Рекламные ссылки

Термометры циферблатные

Однако не все термометры работают таким образом. Тот, что показан в нашем На верхнем фото есть металлический указатель, который перемещается вверх и вниз по круговой шкала. Откройте один из этих термометров, и вы увидите указатель монтируется на свернутом в спираль куске металла, называемом биметаллической полосой, который предназначен для расширения и изгиба при его становится горячее (см. нашу статью о термостатах, чтобы узнать, как это работает). Чем выше температура, тем больше расширяется биметаллическая полоса и тем сильнее она толкает указатель вверх по шкале.

Изображение: Как работает циферблатный термометр: это механизм, который приводит в действие типичный циферблатный термометр, проиллюстрированный в патенте Чарльза В. Патнэма от 1905 года. Вверху мы видим обычную стрелку и циферблат. Нижнее изображение показывает, что происходит вокруг спины. Биметаллическая полоса (желтая) плотно свернута и прикреплена как к корпусу термометра, так и к стрелке. Он состоит из двух соединенных вместе разных металлов, которые при нагревании расширяются в разной степени.При изменении температуры биметаллическая полоса изгибается более или менее сильно (сжимается или расширяется), а прикрепленная к ней стрелка перемещается вверх или вниз по шкале. Произведение искусства из патента США 798 211: термометр любезно предоставлен Управлением по патентам и товарным знакам США.

Фото: Вот свернутая в спираль биметаллическая полоса настоящего термометра со шкалой (термометр морозильной камеры на нашем верхнем фото). Легко увидеть, как это работает: если повернуть стрелку рукой в ​​сторону более низких температур, спиральная полоска затянется; поверните указатель в другую сторону, и полоска ослабнет.

Термометры электронные

Одна проблема с ртутными и циферблатными термометрами заключается в том, что они при этом реагировать на перепады температуры. Электронный У термометров такой проблемы нет: вы просто касаетесь зондом термометра объект, температуру которого вы хотите измерить, и цифровой дисплей дает (почти) мгновенное считывание температуры.

Фото: Электронный медицинский термометр 2010 г. Ставите металлический зонд. у вас во рту или где-то еще на вашем теле, и считайте температуру на ЖК-дисплее.

Электронные термометры работают совершенно иначе, чем механические, использующие ртутные линии или вращающиеся указатели. Они основаны на идее, что сопротивление куска металла (легкость, с которой течет электричество через него) изменяется при изменении температуры. По мере того, как металлы становятся горячее, атомы внутри вибрируют сильнее по ним, электричеству труднее течь, и сопротивление возрастает. Точно так же, когда металлы остывают, электроны движутся более свободно, и сопротивление идет вниз.(При температурах, близких к абсолютному нулю, минимальной теоретически возможной температуре -273,15 ° C или -459,67 ° F, сопротивление полностью исчезает в результате явления, называемого сверхпроводимость.)

Электронный термометр работает, подавая напряжение на его металлический зонд и измерение силы тока, протекающего через него. Если вы опускаете зонд в кипящую воду, тепло воды делает электричество проходит через зонд с меньшей легкостью, поэтому сопротивление на точно измеримую величину. Микрочип внутри термометра измеряет сопротивление и преобразует его в измерение температуры.

Фото: Термометр электрического сопротивления 1912 года: Этот пример термометра сопротивления мостового типа был построен Лидсом и Нортрупом. и используется для измерения температуры в Национальном бюро стандартов США. (ныне NIST) в начале 20 века. Несмотря на его коренастый и неуклюжий вид, его точность составляет 0,0001 градус. Фото любезно предоставлено Национальным институтом стандартов и технологий цифровых коллекций, Гейтерсбург, Мэриленд 20899.

Основным преимуществом таких термометров является то, что они могут мгновенное считывание в любой температурной шкале, которую вы например, по Цельсию, по Фаренгейту или как там.Кроме одного из их недостатков в том, что они измеряют температуру от от момента к моменту, поэтому цифры, которые они показывают, могут довольно сильно колебаться резко, иногда затрудняя получение точных показаний.

В прецизионных электрических термометрах, известных как термометры сопротивления, используются четыре резистора, расположенных по ромбовидной схеме, называемой мостом Уитстона. Если три резистора имеют известные значения, сопротивление четвертого легко рассчитать. Если четвертый резистор выполнен в виде датчика температуры, такую ​​схему можно использовать как очень точный термометр: вычисляя его сопротивление (по его напряжению и току) позволяет нам рассчитать его температуру.

Измерение экстремальных температур

Если вы хотите измерить что-то слишком горячее или холодное для обычного термометра. ручка, понадобится термопара: хитрый прибор который измеряет температуру путем измерения электричества. И если вы не можете подойти достаточно близко, чтобы использовать даже термопару, можно попробовать пирометр, своего рода термометр, который определяет температуру объекта по электромагнитное излучение, которое он испускает.

Что такое температурная шкала?

Фото: Температурные шкалы линейны: определенное повышение температуры всегда перемещает вас на одно и то же расстояние вверх по шкале.Это не означает, что термометры должны быть прямыми, как линейки: это означает, что каждое деление температурной шкалы занимает точно такое же пространство (или, если хотите, ртутный, стрелочный или другой индикатор температуры должен двигайтесь так далеко, чтобы обозначать каждое новое деление при повышении или понижении температуры). Этот циферблатный термометр от газового котла показывает температуру вашего центрального отопления в градусах Цельсия с помощью круговой (но все же линейной) шкалы.

Для термометра не обязательно должна быть нанесена шкала или цифры.Представьте себе, если вы были на необитаемом острове и наткнулись на старый градусник на песке с шкала и цифры стерлись, но в остальном работает нормально. Вы все еще можете использовать это получить представление о температурах. Вы могли бы использовать это очень грубо, чтобы сказать такие вещи, как: «Уровень ртути примерно на полпути, что выше, чем он был вчера, поэтому сегодня должно быть жарче».

Лучше всего поставить свою шкалу на термометр. Во-первых, вам нужно найти что-то действительно холодное (например, кусок льда), поместите термометр на нем и поцарапайте стекло, чтобы отметить уровень ртути.Тогда ты мог бы сделать то же самое чем-нибудь горячим (кипятком) и еще раз отметьте уровень ртути. Мы называем это два опорных уровня температуры фиксированных точек. Чтобы сделать шкалу термометра, все, что нам нужно сделать, это разделить расстояние между двумя фиксированные точки на множество секций одинаковой длины. Вот как по Цельсию термометр получил свое название: у него 100 («центовых») секций («градаций») между неподвижные точки льда и пара. Какие бывают разные температурные шкалы и как они проработаны?

Масштаб Фиксированная точка (и)

Фаренгейт

Первоначально 32 ° F (тающий лед в соли) и 96 ° F (определение температуры тела Даниэля Фаренгейта).

Цельсия

0 ° C (точка замерзания воды) и 100 ° C (точка кипения воды).

Кельвин

Определяется в соответствии с тройной точкой воды (где твердое тело, жидкость и пар находятся в равновесии), которая составляет 273,16 К.

ITS-90 (Международная температурная шкала)

Использует множество различных точек в разных частях своего диапазона.Видеть ИТС-90 подробнее Детали.

Как соотносятся градусы Цельсия и Фаренгейта?

Вы, наверное, знаете, как преобразовать температуру Цельсия в градусы Фаренгейта: умножьте на 9/5 (или 1,8), а затем добавьте 32. Чтобы преобразовать По Фаренгейту на Цельсию вы делаете обратное: вычитаете 32 и умножаете на 5/9 (или делите на 1,8, что одно и то же). Когда вы слышите, как в прогнозах погоды указываются температуры по Цельсию и их эквиваленты по Фаренгейту, вы можете почувствовать, что связь между ними немного странная и сбивающая с толку, потому что они кажутся такими разными.Но если вы нанесете их на диаграмму (как показано ниже), вы увидите, что обе шкалы абсолютно линейны, и каждое повышение температуры, которое добавляет еще 10 ° C, добавляет 18 ° F.

Диаграмма

: шкала температуры Цельсия показана синим цветом, а шкала Фаренгейта — красным цветом. Каждая точка на диаграмме показывает два эквивалентных измерения для определенной температуры, например, 20 ° C. равно 68 ° F. Обе шкалы явно линейны: увеличение на 10 ° C равно увеличению на 18 ° F.

Рекламные ссылки

Узнать больше

На сайте

На других сайтах

Книги для юных читателей

  • Как мы измеряем температуру? Криса Вудфорда. Гарет Стивенс, 2013 / Blackbirch, 2005. Одна из моих собственных книг для юных читателей (7–9 лет). Акцент здесь делается на температуре как на практической, повседневной форме математики.
  • градусов по Фаренгейту, Цельсию и их температурные шкалы Йоминг С. Лин. PowerKIDS Press / Розен, 2012.Историческое введение, в котором рассказываются истории Даниэля Фаренгейта и Андерса Цельсия наряду с практическим измерением температуры.
  • Измерь! Температура Кейси Рэнд. Raintree, 2010. Базовое введение для детей в возрасте от 7 до 9 лет, включающее некоторые темы, связанные с погодой и изменением климата.
  • Температура: нагревание и охлаждение Дарлин Р. Стилле. Picture Window Books, 2004. Альтернативное 24-страничное введение для читателей чуть младше.
  • Термометры Адель Ричардсон.Capstone, 2004. 32-страничное введение, охватывающее те же темы, что и эта статья, но для более молодых читателей (в возрасте 6–8 лет или около того).

Книги для старших читателей

  • Изобретение температуры: измерение и научный прогресс Хасока Чанга. Oxford University Press, 2004. История о том, как люди научились измерять температуру термометрами. Достаточно философская и научная книга, но тем не менее вполне читаемая.
  • Измерение температуры Л. Михальски.Wiley, 2001. Подробное руководство по точным измерениям температуры для ученых и инженеров.
  • Принципы и методы измерения температуры Томас Дональд МакГи. Wiley-IEEE, 1988. Подробный (почти 600 страниц) учебник, охватывающий температурные шкалы и все виды датчиков температуры, включая пирометры, термисторы и термопары.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США.Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2008, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Следуйте за нами

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом друзьям с помощью:

Медиа-запросы?

Вы журналист, у вас есть вопрос для СМИ или просьба об интервью? Вы можете связаться со мной для получения помощи здесь.

Цитируйте эту страницу

Вудфорд, Крис. (2008/2020) Термометры. Получено с https://www.explainthatstuff.com/thermometer.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте …

Я только что сломал градусник. Что мне делать?

Полная история

Повышенная температура может быть признаком инфекции или других заболеваний, поэтому полезно проверить температуру тела с помощью термометра.Температуру можно измерять во рту, прямой кишке, подмышке, ухе и на лбу. Хотя ректальная температура является наиболее точной, часто ее невозможно измерить таким способом. Разумной альтернативой является измерение температуры человека через рот, через ухо или лоб. Есть много видов термометров. Самые старые из используемых термометров — это стеклянные ртутные. Новые термометры включают жидкости в стекле, не содержащие ртути, а также цифровые и электронные устройства, в которых используются датчики для измерения температуры. Термометры, которые измеряют температуру тела в ухе, на лбу или имеют цифровой дисплей, не содержат ртути.Агентство по охране окружающей среды (EPA) рекомендует использовать безртутные термометры, но не рекомендует какой-либо конкретный бренд. Вам следует выбрать термометр, которым легко пользоваться и читать. Потенциально вредное воздействие разбитых термометров зависит от типа термометра. Наибольшее беспокойство вызывают ртутные термометры. Наименее опасными являются цифровые / электронные термометры, потому что они не содержат потенциально опасных жидкостей, которые могут пролиться в случае поломки. Однако многие электронные термометры содержат батарейки с кнопочными элементами, которые могут быть очень вредными при проглатывании.Если аккумулятор проглотил, позвоните на горячую линию для приема внутрь по телефону 800-498-8666.

Воздействие разбитого стеклянного термометра может привести к травме осколком стекла. Исследования детей в отделениях неотложной помощи выявили травмы рта, прямой кишки и уха осколками стекла термометра. В зависимости от типа жидкости внутри стеклянных термометров могут быть и другие опасности. Если у вас есть жидкостный стеклянный термометр, важно уметь определять, содержит ли он ртуть. Несколько простых шагов могут помочь.

Если жидкость не серебристого цвета, она не содержит ртути. Жидкие стеклянные термометры без серебра обычно содержат окрашенный спирт. Попадание на кожу или внутрь рта может вызвать незначительное раздражение или жжение, которое должно быстро исчезнуть. Если жидкость пролилась, смойте водой открытые участки. Если жидкость попала в глаз, промойте глаз водой в течение 15–20 минут, затем позвоните в токсикологический центр.

Существуют жидкостные стеклянные термометры, содержащие не содержащее ртути вещество серебра Галинстан®.Жидкость Галинстан состоит из олова, индия и галлия. По словам производителя, Галинстан не токсичен при проглатывании, потому что он проходит через пищеварительную систему без какого-либо эффекта. Вдыхание также не вызывает беспокойства, потому что нет всасывания через легкие. Воздействие галинстана на кожу может вызвать раздражение.

Если жидкость серебристого цвета, это может быть ртуть. Пролитая ртуть имеет уникальный внешний вид. Это толстый, блестящий, быстро движущийся жидкий металл, который может распадаться на маленькие шарики, которые превращаются, когда их толкают вместе.Именно благодаря этим свойствам ртуть получила прозвище «ртуть». Но не все термометры с серебряной жидкостью содержат ртуть. Если термометр содержит жидкое серебро и не помечен как «безртутный», предположите, что он содержит ртуть.

В определенных ситуациях ртуть может быть ядовитой. Большинство оральных и ректальных термометров содержат около 0,5-0,6 грамма ртути. Основные проблемы со здоровьем, связанные с ртутью, возникают из-за ее паров. Они производятся при комнатной температуре, особенно при нагревании ртути.Пары можно вдыхать и всасывать в организм. Непосредственные эффекты вдыхания высококонцентрированных паров включают кашель, боль в горле, затрудненное дыхание, боль в груди, рвоту и головную боль. Неожиданный способ нагрева ртути и образования паров возникает, когда пылесос используется для очистки пролитой ртути. Никогда не собирайте ртуть из разбитого термометра! Если сразу же не устранить разлив ртути, пары будут продолжать образовываться. Эти пары могут быть в низких концентрациях, которые не вызовут немедленных эффектов, но повторное длительное воздействие паров может вызвать такие проблемы, как тряска, трудности при ходьбе, слабость, головные боли, потеря аппетита, воспаление десен, покраснение кожи, высокое кровяное давление, учащенный пульс, поражение почек и изменения личности.

Количество ртути в ртутном термометре недостаточно, чтобы вызвать отравление, если кто-то обращается с ним с неповрежденной кожей, однако может возникнуть раздражение кожи. Непреднамеренное проглатывание такого количества ртути также плохо усваивается человеком со здоровым пищеварительным трактом. Тем не менее, лучше позвонить в службу токсикологии, если кто-то прикоснется к ртути или проглотит ее, особенно если у человека есть кожные или пищеварительные заболевания, которые могут привести к чрезмерному всасыванию, например псориаз или язвенный колит.Мы можем помочь вам решить, следует ли вам обращаться за медицинской помощью.

В зависимости от конкретных обстоятельств поломки ртутьсодержащих термометров в большинстве случаев можно безопасно справиться дома; однако всегда обращайтесь за помощью в токсикологический отдел по телефону 1-800-222-1222.

Первоначальная обработка после контакта с пролитой ртутью включает мытье водой с мылом, если ртуть попала на кожу, и выход свежего воздуха при вдыхании паров. Проглатывание небольшого количества ртути обычно не требует специального лечения, но промывание водой с последующим плеванием может помочь удалить всю ртуть, остающуюся во рту.Людям с симптомами могут быть назначены специальные препараты, помогающие вывести ртуть из организма.

Количество обращений в службу токсикологии по поводу ртути из сломанных термометров снижается из-за доступности других типов термометров. Хотя ртуть считается высокотоксичным веществом, общий риск токсичности разбитого ртутьсодержащего термометра невелик при принятии соответствующих мер по очистке.

EPA рекомендует следующие шаги по очистке сломанных ртутных термометров в вашем доме.

  1. Попросите всех остальных (включая домашних животных) покинуть территорию; не позволяйте никому проходить сквозь ртуть на пути к выходу. Открыть все окна и двери наружу; закройте все двери в другие части дома.
  2. НЕ позволяйте детям помогать вам убирать разлив.
  3. Mercury можно легко очистить со следующих поверхностей: дерева, линолеума, плитки и большинства других твердых и гладких поверхностей.
  4. При попадании на ковер, шторы, обивку или другие впитывающие поверхности эти загрязненные предметы следует выбросить в соответствии со способами утилизации, описанными ниже.Отрежьте и удалите только пораженную часть загрязненного ковра для утилизации.
  5. Наденьте резиновые, нитриловые или латексные перчатки перед тем, как прикасаться к загрязненным ртутью предметам или сломанным ртутным термометрам.
  6. Осторожно поднимите осколки стекла или острые предметы. Положите все сломанные предметы на бумажное полотенце. Сложите бумажное полотенце и запечатайте его в пакет с застежкой-молнией.
  7. Найдите видимые шарики ртути. НЕ используйте пылесос или метлу для очистки ртути.Используйте ракель или картон, чтобы собрать ртутные шарики. Используйте медленные широкие движения, чтобы ртуть не вышла из-под контроля. Возьмите фонарик, поднесите его под небольшим углом к ​​полу и поищите дополнительные блестящие шарики ртути, которые могут прилипать к поверхности или в небольших трещинах на поверхности. Примечание: Меркурий может перемещаться на удивительные расстояния по твердым плоским поверхностям, поэтому обязательно осматривайте всю комнату.
  8. Возьмите пипетку ртутные бусинки. Медленно и осторожно капните ртуть на влажное бумажное полотенце.Поместите бумажное полотенце в пакет с застежкой-молнией и закрепите. НЕ сливайте ртуть в канализацию.
  9. После того, как вы удалите большие шарики, нанесите крем для бритья на маленькую кисть и аккуратно нанесите мазки на пораженный участок, чтобы собрать более мелкие, трудно различимые шарики. В качестве альтернативы можно использовать липкую ленту, например, изоленту, чтобы убрать оставшиеся небольшие осколки стекла. Поместите малярную кисть или клейкую ленту в сумку на молнии и закрепите.
  10. После того, как все стекло и ртуть будут собраны, обратитесь в местную службу здравоохранения или пожарную службу за инструкциями по утилизации.

Если кто-то столкнулся с разбитым термометром, обратитесь в службу токсикологии по телефону 1-800-222-1222 за советом специалиста.

Карен Д. Домингес, PharmD
Сертифицированный специалист по информации о ядах

Список литературы

Апрахамян Н., Ли Л., Шеннон М. и др. Повреждения стеклянного термометра: дело не только в ртути. Педиатр Emerg Care. 2009; 25: 645-7.

Caravati EM, Erdman AR, Christianson G, et al. Воздействие элементарной ртути: согласованное руководство по внебольничному ведению, основанное на фактических данных.Clin Toxicol (Phila). 2008; 46: 1-21.

Галинистан Паспорт безопасности жидкого материала.

Nivens DJ, Gaudet JE, Laupland KB, et al. Точность периферийных термометров для оценки температуры: систематический обзор и метаанализ. Энн Интерн Мед 2015; 163: 768-77.

Ртутные термометры Агентства по охране окружающей среды США.

Агентство по охране окружающей среды США Что делать, если ртутный термометр сломался.

Velzeboer SC, Frenkel J, de Wolff FA. Малыш-гипертоник. Ланцет. 1997; 349: 1810.

Как пользоваться и читать термометр?

Ссылки

Versare.(2020, 15 апреля). Что такое чихание? Получено с,
https://www.versare.com/blog/what-is-a-countertop-sneeze-screen/

National Geographic. Термометр. Источник:
https://www.nationalgeographic.org/encyclopedia/thermometer/.

World Population Review. Страны, использующие градусы Фаренгейта 2020. Получено с:
https://worldpopulationreview.com/country-rankings/countries-that-use-fahrenheit

Биологические различия.(2018, 20 марта). Разница между градусами Цельсия и Фаренгейта. Получено с,
https://biodifferences.com/difference-between-celsius-and-fahrenheit.html

Центры по контролю и профилактике заболеваний (CDC). Скрининг клиентов на COVID-19 в приютах и ​​лагерях для бездомных. Получено с веб-сайта
https://www.cdc.gov/coronavirus/2019-ncov/community/homeless-shelters/screening-clients-respiratory-infection-symptoms.html.

Медицина Хопкинса.Пищевое отравление. Получено с,
https://www.hopkinsmedicine.org/health/conditions-and-diseases/food-poisoning

Ван Д. (26 мая 2020 г.). Готовить мясо? Проверьте новые рекомендуемые температуры. Получено с,
https://www.usda.gov/media/blog/2011/05/25/cooking-meat-check-new-recommended-temperatures

Petco. Ремоделирование рептилий: правильная настройка среды обитания. Получено с,
https://www.petco.com/content/petco/PetcoStore/en_US/pet-services/resource-center/new-pet/reptile-remodeling-proper-habitat-setup.html

Журнал «Тропические рыбы». Контроль температуры. Получено с,
https://www.tfhmagazine.com/articles/aquarium-basics/temperature-control

Woodford, C. (18 ноября 2019 г.). Термометры. Получено с,
https://www.explainthatstuff.com/thermometer.html

Tree House Weather Kids. С помощью термометра. Получено с,
https://web.extension.illinois.edu/treehouse/seasons.cfm?

NHS.(2018, 8 июня). Может ли сломанный термометр или лампочка вызвать отравление ртутью? Получено с,
https://www.who.int/news-room/fact-sheets/detail/mercury-and-health.

Агентство по охране окружающей среды США. Что делать, если ртутный термометр сломался. Получено с,
https://www.epa.gov/mercury/what-do-if-mercury-thermometer-breaks.

Управление по санитарному надзору за качеством пищевых продуктов и медикаментов США. Вы безопасно храните продукты? Получено с,
https: // www.fda.gov/consumers/consumer-updates/are-you-storing-food-safely

Пешин А. (2019, 22 октября). Почему ртуть используется в термометрах? Получено с,
https://www.scienceabc.com/innovation/why-is-mercury-used-in-thermometer.html.

Меркурий-термометр. Как читать ртутный термометр? Получено с,
https://www.mercury-thermometer.com/how-to-read-mercury-thermometer.php

Детский национальный парк. Температура: Цифровые и стеклянные термометры.Получено с веб-сайта
https://www.nationwidechildrens.org/family-resources-education/health-wellness-and-safety-resources/helping-hands/temperature-digital-and-glass-thermometer

Клиника Майо. Высокая температура. Получено с,
https://www.mayoclinic.org/diseases-conditions/fever/symptoms-causes/

Клиника Кливленда. Термометры: как измерить температуру. Получено с,
https://my.clevelandclinic.org/health/articles/9959-thermometer-how-to-take-your-temperature.

Чирино, Э.(2019, 17 декабря). Как измерить температуру в подмышечной (подмышечной) области. Получено с,
https://www.healthline.com/health/underarm-temp

Детский национальный парк. Температура: Цифровые и стеклянные термометры. Получено с веб-сайта
https://www.nationwidechildrens.org/family-resources-education/health-wellness-and-safety-resources/helping-hands/temperature-digital-and-glass-thermometer

Уилан, К. (20 июня 2016 г.). Что нужно знать о лечении лихорадки.Получено с,
https://www.healthline.com/health/how-to-break-a-fever.

Villines, Z. (2017, 9 февраля). Советы по лечению лихорадки. Получено с,
https://www.medicalnewstoday.com/articles/315706

Здоровье на каждый день. (2017, 14 ноября). Как избавиться от лихорадки: советы, рекомендованные врачом. Получено с,
https://www.everydayhealth.com/lung-respiratory/cold-flu/how-break-fever-doctor-recommended-tips/

Harvard Health Publishing.(2020, 25 марта). Лечение лихорадки у взрослых. Получено с,
https://www.health.harvard.edu/staying-healthy/treating-fever-in-adults.

Клубы здоровья EFM. (2016, 15 января). Проблемы с пищеварением? Попробуйте эти 12 легко усваиваемых продуктов. Получено с,
https://efm.net.au/digestion-issues-try-these-12-easy-to-digest-foods/

Уловка Easy Tech. (2018, 9 июля). 15 лучших приложений для термометров для Android и iOS. Получено с,
https: // www.easytechtrick.org/best-thermometer-apps/

Пич, Б. (16 марта 2020 г.). Термометры продаются на Amazon за сотни долларов, поскольку компания пытается обуздать взвинчивание цен. Получено с,
https://www.businessinsider.com/coronavirus-thermometer-on-amazon-sell-for-hundreds-of-dollars-2020-3.

Взлеты и падения термометров | Глава 1: Вещество — твердые тела, жидкости и газы

  • Узнайте, что студенты знают о термометрах.

    Поднимите спиртовой термометр и спросите учащихся:

    Как вы думаете, почему жидкость в термометре движется вверх и вниз при нагревании и охлаждении?
    Студенты должны понимать, что движение жидкости в термометре связано с движением молекул жидкости при их нагревании и охлаждении. Напомните студентам, что молекулы движутся быстрее и немного дальше друг от друга при нагревании. Молекулы также движутся медленнее и ближе друг к другу при охлаждении.

    Скажите учащимся, что они будут применять свое понимание того, что происходит, когда жидкости нагреваются и охлаждаются, чтобы объяснить, как работает термометр.

    Раздайте каждому учащемуся рабочий лист.

    Учащиеся записывают свои наблюдения и отвечают на вопросы о задании в листе действий. «Объясни это с помощью атомов и молекул» и «Возьми это». Дальнейшие разделы рабочего листа будут заполнены либо в классе, либо в группах, либо индивидуально в зависимости от ваших инструкций.Посмотрите на версию листа с заданиями для учителя, чтобы найти вопросы и ответы.

  • Выполните задание, чтобы выяснить, что заставляет жидкость в термометре подниматься и опускаться.

    Вопрос для расследования

    Что заставляет жидкость в градуснике подниматься и опускаться?

    Материалы для каждой группы

    • Студенческий термометр
    • Лупа
    • Холодная вода
    • Горячая вода (около 50 ° C)

    Процедура

    1. Посмотрите внимательно на части термометра.
      1. Посмотрите внимательно на свой градусник. Жидкость внутри, вероятно, окрашена в красный цвет.

      2. Потренируйтесь считывать температуру в ° C, держа глаз на том же уровне, что и верхняя часть красной жидкости. Какая температура?

      3. С помощью лупы внимательно посмотрите на термометр спереди и сбоку.Посмотрите на лампочку и тонкую трубку, в которых находится красная жидкость.

      4. Положите большой палец на красную лампочку и посмотрите, движется ли красная жидкость в тонкой трубке.

    2. Наблюдайте за красной жидкостью в термометре, когда он нагревается и охлаждается.
      1. Поместите термометр в горячую воду и посмотрите на красную жидкость.Держите его в горячей воде, пока жидкость не перестанет двигаться. Запишите температуру в ° C.

      2. Теперь опустите термометр в холодную воду. Держите его в холодной воде, пока жидкость не перестанет двигаться. Запишите температуру в ° C.

    Ожидаемые результаты

    Красная жидкость поднимается вверх в горячей воде и опускается в холодной воде. У студентов будет возможность связать эти наблюдения с объяснением на молекулярном уровне того, почему жидкость движется таким образом.

    Если у вас есть время, вы можете попросить учеников выбрать температуру где-то между температурой холодной и горячей воды, а затем попытаться объединить количество горячей и холодной воды, чтобы достичь этой температуры за одну попытку. Они могут видеть, насколько близко они могут подойти.

  • Запишите и обсудите наблюдения студентов

    Дайте учащимся время после занятия, чтобы записать свои наблюдения, ответив на следующие вопросы в листе действий.После того, как они ответят на вопросы, обсудите их наблюдения всей группой.

    1. На основании того, что вы знаете о движении молекул в горячих жидкостях, объясните, почему жидкость в термометре поднимается вверх при нагревании.
    2. На основании того, что вы знаете о движении молекул в холодных жидкостях, объясните, почему жидкость в термометре опускается вниз при охлаждении.
    3. Как вы думаете, почему трубка с красной жидкостью такая тонкая?
    4. Как вы думаете, для чего нужна большая внешняя труба?

    При нагревании молекулы красной жидкости внутри термометра движутся быстрее.Это движение конкурирует с притяжением молекул друг к другу и заставляет молекулы расходиться немного дальше друг от друга. Им некуда идти, кроме как вверх по трубе. Когда термометр помещен в холодную воду, молекулы замедляются, и их притяжение сближает их немного сближает, опуская их вниз по трубке. Красная жидкость содержится в очень тонкой трубке, поэтому небольшая разница в объеме жидкости будет заметна. Большая внешняя трубка выполняет две функции: защищает хрупкую внутреннюю трубку и действует как увеличительное стекло, помогая вам лучше видеть красную жидкость.

  • Покажите анимацию молекул жидкости в термометре, когда они нагреваются и охлаждаются.

    Примечание. Молекулы спирта состоят из разных атомов, но в модели, показанной на анимации, молекулы представлены в виде простых красных сфер.

    Показать анимацию молекулярной модели. Нагревание и охлаждение термометра.

    Отметьте, что когда термометр нагревается, молекулы движутся быстрее, немного дальше друг от друга и продвигаются вверх по трубке.Когда термометр охлаждается, молекулы движутся медленнее, сближаются и движутся по трубке. Помогите студентам понять, что притяжение молекул в термометре друг к другу остается неизменным независимо от того, нагревается или охлаждается термометр. Разница в том, что при нагревании молекулы движутся так быстро, что движение конкурирует с притяжением, заставляя молекулы расходиться дальше друг от друга и подниматься по трубке. При охлаждении молекулы движутся медленнее и не так сильно конкурируют с притяжением, которое молекулы испытывают друг к другу.Вот почему молекулы в термометре движутся ближе друг к другу и спускаются по трубке.

    Спросите студентов:

    На анимации видно, что молекулы слегка расширяются при нагревании. Как вы думаете, термометр также работал бы, если бы трубка, в которой движется жидкость, была шире?
    Молекулы разлетаются во все стороны при нагревании. Если бы трубка была широкой, молекулы могли бы свободно распространяться в стороны и вверх. В тонкой трубке молекулы не могут двигаться в стороны очень далеко, поэтому они поднимаются вверх.Это вызывает большую разницу в высоте жидкости, которую легче увидеть.
  • Попросите учащихся нарисовать молекулярную модель, изображающую молекулы жидкости в термометре.

    Спроецировать изображение «Молекулы в термометре».

    На чертеже добавлены линии, указывающие уровень жидкости в каждой трубке. На самом деле линии нет. «Линия» состоит из молекул.Студенты должны нарисовать круги, представляющие молекулы, вплоть до линии, проведенной в каждой трубке.

    Попросите учащихся использовать спроектированную иллюстрацию в качестве руководства при рисовании модели молекул в горячем и холодном термометре на своем рабочем листе.

    На иллюстрации горячего термометра должны быть случайные круги с большим количеством движущихся линий. Круги должны быть немного дальше друг от друга, чем на холодном градуснике.

    Холодный термометр должен показывать случайные круги с меньшим количеством движущихся линий.круги должны быть немного ближе друг к другу, чем круги на горячем градуснике.

  • Обсудите со студентами, почему термометры с разными жидкостями в них поднимаются на разную высоту даже при одной и той же температуре.

    Спроецировать изображение Разные термометры одинаковой температуры.

    Скажите студентам, что на этом рисунке изображены два термометра, которые идентичны во всех отношениях, за исключением того, что в одном из них содержится спирт, а в другом — ртуть.Обратите внимание на то, что оба термометра помещены в горячую воду с температурой 100 ° C. Показаны уровни алкоголя и ртути.

    Спросите студентов:

    Как жидкости в термометрах могут находиться на разных уровнях, даже если они находятся в воде с одинаковой температурой?
    Подсказка: алкоголь и ртуть являются жидкостями, но состоят из разных атомов и молекул. Используйте то, что вы знаете о движении и притяжении частиц в жидкости друг к другу, чтобы объяснить, почему уровни спирта и ртути в термометрах различаются.
    Основная причина, по которой уровень жидкости в каждом градуснике различается, заключается в том, что это разные вещества с разными свойствами.
  • Leave a Reply

    Ваш адрес email не будет опубликован. Обязательные поля помечены *